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Artificial intelligence (AI) methods are very often used to make predictions for datasets that were created externally in
arbitrary experiments or on already literature known datasets. In this work, we try to make use of active learning techniques
to search for an optimal strategy for the startup-phase of bulk nickel electrodes in the oxygen evolution reaction. The
data collected was afterwards reduced in dimensions and used to extract additional information that were learned via an
artificial neural network (ANN) on the dataset, respectively.
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1 Introduction: The Oxygen Evolution
Reaction (OER) Activation Challenge

It is pretty obvious nowadays that we need to diversify the
energy sector and that water splitting will contribute to the
energy mix. No matter which kind of technology we favor
for the oxygen evolution reaction (OER) in the future, being
it alkaline or acidic water splitting, the challenge to tackle
looks manageable on paper (Eq. (1)) but in reality the ele-
mentary steps taking place on the surface of an electrode
are much more complex and therefore the chemistry is the
topic of more than one recent article [1] discussing various
aspects of water splitting [2].

2H2O → 2H2 + O2 (1)

So, which approaches can be used to gain more insights
into water splitting, e.g., on nickel electrodes when they
seem to be pretty sensitive with respect to their reactivity
depending on the activation conditions [3]? One approach
tries to keep industrial conditions in mind [4] leading to
very reproducible results especially under harsh conditions.
It is worth noting that there are many pitfalls when doing
the experiments [5], and the precise protocols like the one
from Thissen et al. [3] are time-consuming. To speed up
the screening for reaction conditions one could think of a
blend of high-throughput experimentation (HTE) [6, 7] and
machine learning (ML) or artificial intelligence (AI) [8] and
like in other disciplines also in catalysis there are already
several approaches and overviews available that attempt
combining approaches of the two neighboring fields [9–11].
We already tried to make some use of ML in catalysis

especially with regards to water splitting [12] and ML in a
broader perspective [13, 14]. We like to use these insights and

tackle the experimental optimization of the startup behav-
ior of bare nickel electrodes in alkaline electrolysis with AI
approaches. But how can this be done when typically experi-
mental data for such an optimization approach is scarce? We
chose to generate the data on the fly while conducting the
experiment itself with an active learning strategy (reinforce-
ment learning, RL) and the overall method development will
be described next.

2 Two Steps Forward, One Step Back -
Method Development

The work on the topic went through several stages. They will
be briefly explained as they are helpful to understand the
method development. All stages of the development have in
common that typical conditions for OER investigations were
used. Unless stated elsewhere, the working electrode was a
bare nickel electrode, the counter electrode was platinum.
As reference electrode served an Ag/AgCl (3 M KCl) elec-
trode, and the electrolyte was a 1 molar KOH solution. All
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Figure 1. Scanning droplet cell used for the algorithmic optimization.

experiments were carried out at ambient temperature and
pressure.
– Initial phase: In a first attempt we tried to establish a
method for an optimized activation of bare nickel elec-
trodes at all. Randomly generated potential profiles were
imprinted on the electrodes and closely watched with
active learning algorithms. The experiments were carried
out in a self-built flow cell and resulted in hints on how to
refine the strategy.

– Study on reproducibility: The initial phase in the flow
cell yielded experimentally in two outcomes or advance-
ments. On the one hand the random profiles were refined
with profiles that were generated out of several sinusoidal
profiles, and on the other hand the flow cell seemed to
have heavy issues with respect to reproducibility. The lat-
ter was mainly addressed in the next step but could not
completely be solved by the change in the experimental
strategy.
To really move one step forward in method develop-

ment we moved away from a flow cell. The reproducibility
issues were mainly due to the phase between two measure-
ments. As each step in the optimization should start again
with a clean electrode, the regeneration step in between
has to be very thorough. Up to now we have not man-
aged to fully optimize this cleaning step. The next important
development is depicted in Fig. 1.
Instead of a flow cell a scanning electrochemical micro-

scope (SECM) equipped with a droplet cell (Sensolytics
GmbH) was used. Apart from the xyz-stage the setup con-
sists of a potentiostat (Metrohm PGSTAT204) and a pump
together with a force sensor (Sensolytics). This enabled us to
scan over a bulk nickel plate and have a fresh spot of mate-
rial for each experiment. As the droplet cell has an opening
of 2 mm and the electrodes have a size from 50 mm ×

50 mm, up to about 250 measurements can be done without
exchanging the electrode. To ensure an always fresh measur-
ing environment, the 1 molar KOH is exchanged from the
cell between the measurements.

For the control of the automated setup, several stages of
software packages are developed that work together:
– autolab.py: This package is like all the rest written in
Python [15]; it is the foundation and controls the poten-
tiostat. It serves as an interface to the Metrohm Autolab
SDK.

– langpy.py: The langpy package is used to control the
stepper motor via the motor controller API.

– secm.py: In the secm package not only the control of the
pump and the force sensor is implemented but also an
abstract workflow for the SECM and its experiments.

– aec.py: The aec (“Artificial Electrochemist”) package
finally takes care of all the experiments and implements
the AI with its algorithms.
All can be found in an online repository [16]. To qualify

the setup and the packages written, a set of 100 linear sweep
voltammograms were recorded on a bulk nickel plate in
1 molar KOH with a scan rate of 5 mV s−1 (Fig. 2, left). The
measurements show a good reproducibility before a proba-
ble mass transfer limitation starts. Especially the area around
the onset potential of the OER can be regarded as stable. A
histogram of the onset potentials (Fig. 2, right) shows a nar-
row distribution around 1.64 V leading to an overpotential
of around 0.398 V for all experiments. With the strategy to
move from a flow cell to a droplet cell, the reproducibility
issues seem to be compensated. Experimentally this leaves
the challenge of the mass transfer limitation in the higher
potential region which could maybe be resolved by pump-
ing the electrolyte through the droplet cell but this is beyond
the scope of this manuscript.
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Figure 2. Cyclic voltammetry of 100 experiments on a bulk nickel plate in 1 M KOH with 5 mV s−1 and its error in blue (left) and a
histogramm of the resulting onset potentials (right).

3 Active Learning to Optimize the
Conditioning Process

With the experimental prerequisites in place, we tried now
tomake use of active learning strategies to optimize the OER
conditioning phase on nickel. Some part of active learning
is also called reinforcement learning (RL) and its principle
is illustrated in Fig. 3.
The basic idea is that an agent carries out an action on a

system. This agent then sees what happened to the system
in question and depending on the outcome gets a reward.
The agent then optimizes its actions to get a maximal reward
[17, 18]. For RL to work the transition from one state to
the next has only to be affected by the action and the orig-
inal state (Markov decision process) [18, 19]. The reward
is constructed in a way that it has its maximum when the
task to optimize, here the conditioning phase of the OER,
is sufficiently fulfilled. To do so, two different agents were
implemented (Fig. 4).

Figure 3. Principle of active/reinforcement learning.

One is a simple agent (SA) which directly gets back all
observations after the action taken. The second agent is a
time-resolved agent (TRA) which gets a time average over
300 episodes of the optimization. Both agents were based on
Deep-Q algorithms which means that it is a model-free opti-
mization without any knowledge of electrochemistry like,
e.g., the Butler-Vollmer equation. Both agents start at a
potential of 1.31 V and control the potential for 1500 steps
with a length of 0.4 s per step. This is then repeated for
several hundred episodes. The minimal potential is set to
1.152 V, the maximal potential is set to 1.53 V. The learning
rates were 0.0023 for the SA and 0.0001 for the TRA. The
neural networks used have in both cases two hidden lay-
ers with 256 neurons each. The agents were implemented
in a “Gymnasium” environment (OpenAI Gym) together
with the stable baselines 3 package which implements both
Deep-Q agents [20, 21].

Figure 4. Agents used for the active learning strategies. The
simple agent (SA, top) gets all observations at once, the time-
resolved agent (TRA, bottom) gets a history of 300 episodes.
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Figure 5. Loss curves of the simple agent (SA, left) and the time-resolved agent (TRA, right).

After training both agents, the resulting loss curves
(Fig. 5) were analyzed. On the left side the loss curve of the
SA is shown. There is no visible trend which leads to the
conclusion that the SA was not able to learn anything from
the training at all. There are just regular spikes showing up
in the loss curve most probably because the agent only gets a
reward at the end of each episode. The agent does not seem
to associate any behavior of the system with respect to the
rewards. The TRA on the other hand (Fig. 5, right) shows
a completely different behavior in the loss curve. First,
the loss rises roughly until episode 450. This is not very
common as typically the loss starts at a certain level and
then slowly decreases. Then the loss decreases which would
be a hint for the algorithm to learn something from the
actions and rewards undertaken. But then it rises again. As
no more experiments were done, it is not clear if this might
be, e.g., a periodic behavior. At least building a time average

over the data seems to increase the information content
and makes the algorithm learn from the active learning
procedure.

The results of the learning phase of the TRA are summa-
rized in Fig. 6. First, we tried to extract a time vs. potential
profile from the measurements (Fig. 6, left) and surprisingly
the algorithm seems to suggest to activate the electrode via
a triangular potential profile which is in principle a cyclic
voltammetry procedure like also proposed in many litera-
ture references [3]. The histogram of the onset potentials
was again plotted for all experiments, and it peaks around
1.625 V leading to an average overpotential of 0.401 V for
all 526 experiments compared to 0.398 V for the reference
experiments from Fig. 2. The main advantage of the method
is the time in which the optimization is executed. While the
reference CVs take about 15 min each, the optimized CV
takes only about 2 min for the whole conditioning process.

Figure 6. Results of the active learning procedure of the TRA. An extracted time vs. potential curve (left) and a histogram of the onset
potentials (right).
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One contribution to this short time is of course the time step
and the overall episode length during the optimization.

4 Supervised Learning to Extract Further
Information

After the active learning procedure, we were not completely
satisfied with the outcome of the optimization. We therefore
went for alternative approaches to extract data from the
dataset collected with the active learning approach. But
first the data had to be reshaped or reduced, respectively,
as the data has a dimensionality problem. The dataset from
the optimization contains finally 526 observations (table
rows) but each observation contains 300 potentials (table
columns). To make proper use of the data, the columns
had to be reduced by roughly one order of magnitude
(“curse of dimensionality”) compared to the rows. So,
before using supervised methods we had to employ unsu-
pervised methods to reduce the dimensionality of the
data.
To yield consistent results, Scikit-Learn [22] pipelines

were used where always one dimensionality reduction algo-
rithm was connected to an artificial neural network (ANN,
MLPRegressor). Several methods were compared like prin-
cipal component analysis (PCA) [23] with 100 principal
components, K-means clustering with three clusters, and a
window-based averaging approach with a window size of
11 features and a stride length of 4 yielding 72 features to
reduce the data, respectively. The untreated raw dataset was
added for comparison to the procedure. To yield optimal
results, the ANN was optimized with the random search
cross validation procedure from Scikit-Learn. The result-
ing optimal hyperparameters can be found in Tab. 1. The
outcome of this optimization procedure is illustrated in
Fig. 7.

Table 1. Best hyperparameters for each model as determined by
random search cross validation.

Hyperparameter Raw Data PCA K-Means Window-based

Optimizer adam adam lbfgs lbfgs

Hidden layer size [500, 500] [500, 500] [256, 256] [500, 500]

α 1 1 1 0.01

ε 1e10−8 1e10−9 1e10−7 1e10−7

On the left-hand side, a comparison for the R2 score of
the predicted results of the ANN is displayed for the differ-
ent dimensional reduction algorithms. The window-based
approach clearly outperforms all other methods with a final
score of about 0.99 for the training dataset and only a lit-
tle lower 0.976 for the test set (train: 426 samples, test: 100
samples). The lower score for the test set also is a hint that
not too much overfitting is occurring. To visualize the pre-
dictions of the best performing combination, a parity plot
(Fig. 7, right) shows that all data points lie well along the
diagonal, emphasizing the good quality of the final result.
Now with a decent predictability of the experimental

dataset at hand, a procedure was needed to extract the infor-
mation that is hidden in the ANN. Although nowadays
methods exist to extract information from ANNs like going
backwards through the layers [24], this was not possible with
the ANN implementation out of Scikit-Learn and another
approach had to be used. The proposed method is presented
in Fig. 8.
The idea is to first train an ANN with a dataset like

already shown (Fig. 7). The ANN uses a potential (voltage)
profile as input variables to predict an overpotential. The
ANN should now be able to predict any overpotential based
on a provided potential profile. But how can we now extract
a potential profile that leads to the lowest overpotential as

Figure 7. Resulting R2 score for the compared dimensional reduction algorithms (right) and predicted results for the ANN after the
optimized data reduction (right).
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Figure 8. Procedure to make use of the hidden information in the ANN.

this information is still hidden in the ANN? We are looking
for a minimum in the overpotential now, and a tradi-
tional algorithm like the Nelder-Mead-Algorithm (Simplex)
[25, 26] should be well suited. The Simplex algorithm varies
the voltage profile at the input until a minimum in overpo-
tential is reached. The resulting voltage profile can be used
for the experimental verification of the results and to extend
the original data if you like so.
The extracted optimal voltage profile is shown in Fig. 9,

left together with its experimental verification on the right.
The time versus potential profile again shows the behavior
of a cyclic voltammogram in the potential range between
1.15 and 1.55 V vs. RHE. The profile shows the typical cyclic
potential that is often used for the conditioning of nickel
electrodes, so we were slightly optimistic to also get a good
prediction for the overpotential. With a prediction for the
overpotential of 1.52 V we went into the experimental vali-
dation. Here (Fig. 9, right), 50 experiments were carried out
and the resulting potential curves are shown on the right
side of Fig. 9 together with the benchmarking experiments.

In the verification experiments some peculiarities can
be seen. The peak at around 1.4 V vs. RHE which is often
prescribed to the production of NiOOH [3] is not so well
pronounced like before. In the higher potential range, there
seems to be some mass transport limitation which fortu-
nately is not that important for the outcome of this study.
The most obvious observation is that the verification (red)
and benchmarking (blue) experiments are well on top of
each other, emphasizing the reproducibility of the method,
but the overpotential predicted by our methodology is
1.52 V (cross) which is about 9 % off from the experi-
ments. Regarding the aspect that this study is based on
high-throughput experimentation, an error of around 9 %
is still not bad but what are factors that contribute to this
error?

The first aspect is that the determination of the overpo-
tential yield sometimes errors during the experiments. This
should be correctable in the future. More severe are the facts
that with around 500 observations the dataset is still small.
And the data for the supervised learning approach originates

Figure 9. Resulting potential profile proposed by the ANN after supervised learning (left) and experimental validation of the proposed
profile (right). The benchmark experiments and the predicted overpotential (x) are shown for comparison.
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from an active learning procedure resulting in a somewhat
biased dataset as the algorithms will only be chasing the
states with the most reward. To fix this, a more random dis-
tribution over the OER potential range would probably help.
But still the approach seems to be feasible for an automated
testing of electrodes.

5 Conclusions

In this study, we could unfortunately not show a better start-
up procedure for nickel electrodes as nickel was kind of
unimpressed by our endeavors. But the methodology used
seems to be promising to be applied on other occasions.
Here, we could demonstrate two things: First, that active
learning strategies can supplement high-throughput exper-
imentation, especially when data can relatively easily be
collected like in electrochemistry. Second, we could show
how to extract optimal parameters in case they are hidden
in an ANN. This might be a very general theme that can be
employed on many occasions. Combining those two meth-
ods is not completely advisable as the biased datasets from
active learning might not be advantageous for the outcome
of the supervised learning process.
The source for this artificial electrochemist is available

at the following git repository: https://git.rwth-aachen.de/
ai4oer.
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SECM scanning electrochemical microscope
TRA time-resolved agent
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